Riemannian M-spaces with homogeneous geodesics

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneous geodesics in homogeneous Finsler spaces

In this paper, we study homogeneous geodesics in homogeneous Finsler spaces. We first give a simple criterion that characterizes geodesic vectors. We show that the geodesics on a Lie group, relative to a bi-invariant Finsler metric, are the cosets of the one-parameter subgroups. The existence of infinitely many homogeneous geodesics on compact semi-simple Lie group is established. We introduce ...

متن کامل

Discrete Groups and Non-riemannian Homogeneous Spaces

A basic question in geometry is to understand compact locally homogeneous manifolds, i.e., those compact manifolds that can be locally modelled on a homogeneous space J\H of a finite-dimensional Lie group H. This means that there is an atlas on a manifold M consisting of local diffeomorphisms with open sets in J\H where the transition functions between these open sets are given by translations ...

متن کامل

The Kinematic Formula in Riemannian Homogeneous Spaces

Let G be a Lie group and K a compact subgroup of G. Then the homogeneous space G/K has an invariant Riemannian metric and an invariant volume form ΩG. Let M and N be compact submanifolds of G/K, and I(M ∩ gN) an “integral invariant” of the intersection M ∩ gN . Then the integral

متن کامل

Spaces of pseudo - Riemannian geodesics and pseudo - Euclidean billiards Boris

In pseudo-Riemannian geometry the spaces of space-like and timelike geodesics on a pseudo-Riemannian manifold have natural symplectic structures (just like in the Riemannian case), while the space of light-like geodesics has a natural contact structure. Furthermore, the space of all geodesics has a structure of a Jacobi manifold. We describe the geometry of these structures and their generaliza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Global Analysis and Geometry

سال: 2018

ISSN: 0232-704X,1572-9060

DOI: 10.1007/s10455-018-9603-7